Indian Statistical Institute, Bangalore B. Math (II) Second Semester 2018-19 Backpaper Examination : Statistics (II) Maximum Score 100

Date: 13-06-2019

Duration: 3 Hours

1. Let X_1, X_2, \dots, X_n be a random sample from $Poisson(\lambda), \lambda > 0$. Find method of moments estimator as well as maximum likelihood estimator for λ . What happens if $\sum_{i=1}^{n} X_i = 0$?

[5+7+2=14]

- 2. Suppose there are 12 reservation counters for state run buses in the city of Bangalore. A counter is open on any particular day with probability θ , $0 < \theta < 1$. The counters function independently of each other. For reasons of proximity and convenience, Shilpak uses either counter 1 or counter 2. Shilpak is interested in knowing i) $\tau_1(\theta)$, the probability that either counter 1 is open or counter 2 is open on any given day and ii) $\tau_2(\theta)$, the probability that exactly one of the counters 1 and 2 is open on a given day. Let $X_i = 1$ if the *i*th counter is open and $X_i = 0$ if the *i*th counter is closed on a given day, $1 \le i \le 12$. Let X_1, X_2, \dots, X_{12} be the random sample taken on some day indicating whether various of the reservation counters are open or not.
 - (a) Find $\tau_1(\theta)$ and $\tau_2(\theta)$.
 - (b) Show that $T = \sum_{i=1}^{12} X_i$ is a minimal sufficient statistic for θ .
 - (c) Is $T = \sum_{i=1}^{12} X_i$ complete as well? Substantiate.
 - (d) Find Fisher information $I(\theta)$ contained in the sample X_1, X_2, \dots, X_{12} about θ .
 - (e) Find an unbiased estimator for $\tau_2(\theta)$. Hence or otherwise obtain UMVUE for $\tau_2(\theta)$.

[4+4+5+5+8=26]

- 3. Suppose that an electronic system contains n similar components which function independently of each other and which are connected in series, so that the system fails as soon as one of the components fails. Suppose X_1, X_2, \dots, X_n denote the lifetimes of the n components. Suppose also that the lifetime of each component, measured in hours, has *exponential distribution* with $pdf \quad \frac{1}{\lambda}e^{-\frac{x}{\lambda}}I_{(0,\infty)}(x), \lambda > 0$. The system user has reasons to believe that λ has a *prior distribution* given by Gamma(a, b), a > 0, b > 0 known.
 - (a) Find the distribution of Y, the lifetime of the system. Determine E(Y) (= θ say), the expected lifetime of the system.
 - (b) Obtain *posterior distribution* of θ given the observation Y. Obtain mean and variance of the *posterior distribution* of θ .
 - (c) Suggest Bayes estimator for θ .

[(6+3)+10+3=22]

[PTO]

4. Let X_1, X_2, \dots, X_n be the random sample from $N(\theta, \sigma^2), \theta \in \mathbb{R}$ and $\sigma^2 > 0$ are both unknown. Consider the testing problem

$$H_0: \theta = \theta_0 \ versus \ H_1: \theta \neq \theta_0.$$

where $\theta_0 \in \mathbb{R}$ is a specified value.

- (a) Derive size α likelihood ratio test.
- (b) Find *p*-value.
- (c) Find 90% confidence interval for θ .

[11 + 3 + 6 = 20]

- 5. An automatic filling machine is used to fill bottles with liquid detergent. A random sample of 20 bottles results in a sample variance of fill volume of $s^2 = 0.0153$ square fluid ounces. If σ^2 , the variance of fill volume, exceeds 0.01 square fluid ounces, an unacceptable proportion of bottles will be under or overfilled.
 - (a) Is there evidence in the sample data to suggest that the manufacturer has a problem with under and overfilled bottles? Use $\alpha = 0.05$.
 - (b) Report the p-value.
 - (c) Obtain 90% one sided confidence interval for σ^2 .

[12 + 4 + 6 = 22]